Measuring the capacitance of coaxial open-circuits

Martin Salter

24th ANAMET meeting 15th/ 16th September 2005
Agilent Technologies, South Queensferry
• AIM to obtain traceable measurements of capacitance coefficients for coaxial open-circuit VNA cal standards

• Standard model of coaxial open-circuits
• Least squares fitting of model to VRC data
• Propagation of uncertainty from phase of VRC to capacitance coefficients using Monte Carlo
• Typical results for a GPC-7 open-circuit
Model of coaxial open-circuit (1)

\[\Gamma = \Gamma_0 \exp(-2\gamma l) \]
Model of coaxial open-circuit (2)

For a flush open-circuit:

\[
\Gamma_0 = \frac{Z - Z_0}{Z + Z_0} \quad Z = \frac{1}{j\omega C}
\]

\[
\Gamma_0 = \frac{\frac{1}{j\omega C} - Z_0}{\frac{1}{j\omega C} + Z_0} = \frac{1 - j\omega C Z_0}{1 + j\omega C Z_0}
\]

\[
\Gamma_0 = \frac{\sqrt{1 + (\omega C Z_0)^2} \exp\left(j \tan^{-1}(-\omega C Z_0)\right)}{\sqrt{1 + (\omega C Z_0)^2} \exp\left(j \tan^{-1}(\omega C Z_0)\right)} = \exp\left(-j 2 \tan^{-1}(\omega C Z_0)\right)
\]

Magnitude

\[|\Gamma_0| = 1\]

Phase

\[\phi_0 = -2 \tan^{-1}(\omega C Z_0)\]
Model of coaxial open-circuit (3)

\[\phi_0 = -2 \tan^{-1}(\omega CZ_0) \]

Approximate frequency dependence of capacitance by a cubic polynomial

\[C \equiv C(f) \approx C_0 + C_1 f + C_2 f^2 + C_3 f^3 \]

Express phase in degrees

\[\phi_0(f) = -\frac{360}{\pi} \tan^{-1}\left(2\pi Z_0 \left(C_0 f + C_1 f^2 + C_2 f^3 + C_3 f^4\right)\right) \]
Fitting the model to VRC data (1)

- For a flush open-circuit, model can be written

\[
\tan\left(\frac{\phi_0}{C}\right) = b_0 f + b_1 f^2 + b_2 f^3 + b_3 f^4 = P(f)
\]

\[b_i = 2\pi Z_0 C_i\]

- Measure phase of VRC at \(m\) frequencies \(\{(z_i, y_i) : i = 1, \ldots, m\}\)

- Obtain best fit cubic polynomial to transformed data \(\{(z_i, q_i) : i = 1, \ldots, m\}\)

where

\[q_i = \tan\left(\frac{y_i}{C}\right)\]

(using weighted least squares)
Fitting the model to VRC data (2)

- Choose weights for transformed data $u(q_i)$ so that

$$
\frac{y_i - \phi(z_i)}{u(y_i)} = \frac{q_i - P(z_i)}{u(q_i)}
$$

- Applying L’Hopital’s rule this leads to

$$
u(q_i) = \left| \frac{1}{C} \right| \sec^2 \left(\frac{y_i}{C} \right) u(y_i)$$
1 Specify the measurement model that relates the input quantities (phase of VRC at \(m \) frequencies) to the output quantities (capacitance coefficients - \(C_0, C_1, C_2, C_3 \)).

2 Assign a joint distribution to the input quantities of the measurement model. The input quantities are the VRC phase values measured at \(m \) frequencies. Assume phase values at different frequencies are uncorrelated.
3 Generate a large random sample of size \(n\) from the joint distribution of the input quantities (the ‘input sample’)

\[
\begin{bmatrix}
\phi_1(f_1) & \cdots & \phi_1(f_m) \\
\vdots & \ddots & \vdots \\
\phi_n(f_1) & \cdots & \phi_n(f_m)
\end{bmatrix}
\]

4 Apply the measurement model to each point of the input sample to obtain a large random sample from the distribution of the output quantities (the ‘output sample’)

\[
\begin{bmatrix}
C_0(1) & \cdots & C_3(1) \\
\vdots & \ddots & \vdots \\
C_0(n) & \cdots & C_3(n)
\end{bmatrix}
\]
5 Extract the required uncertainty information from the output sample (e.g. by sorting and trimming to give a coverage interval)
95% prediction interval for phase

- From Monte Carlo Sample of Capacitance coefficients, a sample of phase values at frequency F can be obtained

$$
\begin{bmatrix}
\phi_1(F) \\
\vdots \\
\phi_n(F)
\end{bmatrix}
$$

- From this a 95% prediction interval for the phase at frequency F can be derived
Results – GPC-7 (1)
Results – GPC-7 (2)

<table>
<thead>
<tr>
<th></th>
<th>NPL capacitance coefficients derived from PIMMS</th>
<th>Manufacturer’s generic capacitance coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_0 /10^{15} \text{ F}$</td>
<td>91.2 ± 1.7</td>
<td>87.2</td>
</tr>
<tr>
<td>$C_1 /10^{25} \text{ F Hz}^{-1}$</td>
<td>6.9 ± 5.6</td>
<td>17.0</td>
</tr>
<tr>
<td>$C_2 /10^{35} \text{ F Hz}^{-2}$</td>
<td>-5.4 ± 5.7</td>
<td>-15.1</td>
</tr>
<tr>
<td>$C_3 /10^{45} \text{ F Hz}^{-3}$</td>
<td>6.1 ± 1.8</td>
<td>8.9</td>
</tr>
</tbody>
</table>
Comparison of phase predicted by manufacturer’s capacitance coefficients with phase predicted by NPL capacitance coefficients (dashed curves define NPL 95% prediction interval)
• Maximum difference between the phase predicted by the manufacturer’s and NPL’s capacitance coefficients is about 0.7° at 16 GHz

• This is significant –
 – It corresponds to a length error of about 50 µm
 – It corresponds to a magnitude error of about

\[u(\Gamma) = \sin(u(\phi)) = 0.012 \]
Effect of uncertainty in knowledge of open-circuit
Conclusion

- Traceable values have been obtained for open-circuit capacitance coefficients
- These can differ significantly from the manufacturer’s generic values
- Use of traceable rather than generic capacitance coefficients could result in reduced measurement uncertainties for DUTs